If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2^x*3^x=16384
We move all terms to the left:
2^x*3^x-(16384)=0
Wy multiply elements
6x^2-16384=0
a = 6; b = 0; c = -16384;
Δ = b2-4ac
Δ = 02-4·6·(-16384)
Δ = 393216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{393216}=\sqrt{65536*6}=\sqrt{65536}*\sqrt{6}=256\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-256\sqrt{6}}{2*6}=\frac{0-256\sqrt{6}}{12} =-\frac{256\sqrt{6}}{12} =-\frac{64\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+256\sqrt{6}}{2*6}=\frac{0+256\sqrt{6}}{12} =\frac{256\sqrt{6}}{12} =\frac{64\sqrt{6}}{3} $
| 8(-x)+1)=10 | | x=1^1.9 | | 2x+145=180 | | 2a-3/6=2a/3+1/2 | | Y=42x+95 | | 2x=3.22 | | 0=x^2+3x-1.5 | | 12x=-18x+100 | | 40=m2 | | 3x-6=8x+11 | | 3/8u=15 | | 15x+8=12x+23 | | 5x+2=2x+11= | | (7y+6)=4y+116 | | 27x-5=7/4 | | 6g+3=27+4g | | 2x-6x-9=13 | | 3(1+x)=2P-5+2X | | (7x+6)=4x+116 | | -9x+4=15 | | 26+3/8y=6 | | 4w-17=35 | | 6=(5x-7)x | | 3+h=1/4 | | 6(3x+2)=3(6x+4) | | 4x(x+5)+6x+22=2x+5 | | ^x+9=x+7 | | a÷6=9 | | (6^x)=209 | | 14x=125 | | -6.5=s/9 | | 6^(x)=209 |